首页> 外文OA文献 >Server assisted distributed cooperative localization over unreliable communication links
【2h】

Server assisted distributed cooperative localization over unreliable communication links

机译:服务器协助分布式协作本地化不可靠   通讯链接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers the problem of cooperative localization (CL) usinginter-robot measurements for a group of networked robots with limited on-boardresources. We propose a novel recursive algorithm in which each robot localizesitself in a global coordinate frame by local dead reckoning, andopportunistically corrects its pose estimate whenever it receives a relativemeasurement update message from a server. The computation and storage cost perrobot in terms of the size of the team is of order O(1), and the robots areonly required to transmit information when they are involved in a relativemeasurement. The server also only needs to compute and transmit update messageswhen it receives an inter-robot measurement. We show that under perfectcommunication, our algorithm is an alternative but exact implementation of ajoint CL for the entire team via Extended Kalman Filter (EKF). The perfectcommunication however is not a hard requirement. In fact, we show that ouralgorithm is intrinsically robust with respect to communication failures, withformal guarantees that the updated estimates of the robots receiving the updatemessage are of minimum variance in a first-order approximate sense at thatgiven timestep. We demonstrate the performance of the algorithm in simulationand experiments.
机译:本文考虑了使用有限的板载资源的一组网络机器人之间的机器人间测量来进行协作定位(CL)的问题。我们提出了一种新颖的递归算法,其中每个机器人都通过局部航位推算将自己定位在全局坐标系中,并且每当它从服务器接收到相对测量更新消息时,都会机会性地校正其姿态估计。就团队规模而言,perrobot的计算和存储成本约为O(1),并且仅在涉及相对测量时才需要机器人传输信息。当服务器收到机器人间的测量值时,它也仅需要计算和发送更新消息。我们表明,在完美沟通的情况下,我们的算法是通过扩展卡尔曼滤波器(EKF)为整个团队提供联合CL的替代方法,但是精确的实现。然而,完美的沟通并不是一个硬性要求。实际上,我们证明了算法在通信失败方面具有内在的鲁棒性,并正式保证了在给定的时间步长上,接收到更新消息的机器人的更新估计值在一阶近似意义上具有最小方差。我们在仿真和实验中证明了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号